Higher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives

نویسندگان

  • Jürgen Geiser
  • J. Geiser
چکیده

In this article we discuss a combination between fourth-order finite difference methods and fourth-order splitting methods for 2D parabolic problems with mixed derivatives. The finite difference methods are based on higher-order spatial discretization methods, whereas the timediscretization methods are higher-order discretizations using CrankNicolson or BDF methods. The splitting methods are higher-order compact alternating direction implicit (ADI) methods. Here we construct a fourth-order splitting method with respect to the weighting factors. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Mathematics Subject Classifications: 35J60, 35J65, 65M99, 65N12, 65Z05, 74S10, 76R50, 80A20, 80M25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Difference Schemes with Cross Derivatives Correctors for Multidimensional Parabolic Systems

Abstract. We propose finite difference schemes for multidimensional quasilinear parabolic systems whose main feature is the introduction of correctors which control the second-order terms with mixed derivatives. We show that with these correctors the schemes inherit physically relevant properties present at the continuous level, such as the existence of invariant domains and/or the nonincrease ...

متن کامل

Flux-Splitting Schemes for Parabolic Problems

To solve numerically boundary value problems for parabolic equations with mixed derivatives, the construction of difference schemes with prescribed quality faces essential difficulties. In parabolic problems, some possibilities are associated with the transition to a new formulation of the problem, where the fluxes (derivatives with respect to a spatial direction) are treated as unknown quantit...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

Fourth-Order Splitting Methods for Time-Dependant Differential Equations

This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that are modeled by wave equations or heat equations. Here, we study both parabolic and hyperbolic equations. We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods, which are standard splitting me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007